Energy, Environmental, and Catalysis Applications
- Wing Chung Liu
Wing Chung Liu
WPI International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
More by Wing Chung Liu
- Roman Selyanchyn
Roman Selyanchyn
WPI International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
Platform of Inter-Transdisciplinary Energy Research (Q-PIT), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
Research Center for Negative Emissions Technologies (K-NETs), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
More by Roman Selyanchyn
- Shigenori Fujikawa*
Shigenori Fujikawa
WPI International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
Research Center for Negative Emissions Technologies (K-NETs), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
*Email: [emailprotected]
More by Shigenori Fujikawa
Other Access OptionsSupporting Information (1)
ACS Applied Materials & Interfaces
Cite this: ACS Appl. Mater. Interfaces 2025, XXXX, XXX, XXX-XXX
Click to copy citationCitation copied!
https://pubs.acs.org/doi/10.1021/acsami.4c22235
Published April 24, 2025
Publication History
Received
Accepted
Revised
Published
online
research-article
© 2025 American Chemical Society
Request reuse permissions
Abstract
Click to copy section linkSection link copied!
Membrane-based direct air capture (m-DAC) has recently been introduced as a simple, scalable, and environmentally friendly method to capture CO2 from the atmosphere. The captured CO2 is considered to be a carbon source for chemical reduction to other value-added chemicals. However, the chemical reduction of CO2 is disrupted by any O2 in the captured gas. Therefore, membranes with high CO2/O2 selectivity are essential for the m-DAC process. In this work, we design magnetic mixed matrix membranes (MMMs) with magnetic nanoparticle (MNP) fillers in polymer matrices, which exhibit room-temperature trapping of gaseous O2 within the membrane to achieve high CO2/O2 selectivities. We found that the CO2/O2 selectivity increased with both the MNP content and the externally applied magnetic field strength, signifying the magnetic interaction of paramagnetic O2 with MNP, while the permeation of CO2 remained unaffected. The experimental results were supported by our mathematical model. Overall, the magnetic PolyActive-MMMs containing 40 wt % MNPs achieved the highest CO2/O2 selectivity of 35 under a magnetic field of 800 mT, corresponding to a selectivity enhancement of 60% over pure PolyActive membranes. Our findings demonstrate the potential of using magnetic fields to control gas transport for applications that require the separation of O2 from other gases.
ACS Publications
© 2025 American Chemical Society
Subjects
what are subjects
Article subjects are automatically applied from the ACS Subject Taxonomy and describe the scientific concepts and themes of the article.
- Magnetic properties
- Membranes
- Mixtures
- Permeability
- Selectivity
Keywords
what are keywords
Article keywords are supplied by the authors and highlight key terms and topics of the paper.
Read this article
To access this article, please review the available access options below.
Get instant access
Purchase Access
Read this article for 48 hours. Check out below using your ACS ID or as a guest.
Recommended
Access through Your Institution
You may have access to this article through your institution.
Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.
Recommended
Log in to Access
You may have access to this article with your ACS ID if you have previously purchased it or have ACS member benefits. Log in below.
-
Purchase access
Purchase this article for 48 hours $48.00 Add to cart Purchase this article for 48 hours Checkout
Cited By
Click to copy section linkSection link copied!
This article has not yet been cited by other publications.
Download PDF
Get e-Alerts
Get e-Alerts
ACS Applied Materials & Interfaces
Cite this: ACS Appl. Mater. Interfaces 2025, XXXX, XXX, XXX-XXX
Click to copy citationCitation copied!
Published April 24, 2025
Publication History
Received
Accepted
Revised
Published
online
© 2025 American Chemical Society
Request reuse permissions
Article Views
38
Altmetric
-
Citations
-
Learn about these metrics
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.